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At-fault crash-prone drivers are usually considered as the high risk group for possible

future incidents or crashes. In Louisiana, 34% of crashes are repeatedly committed by the

at-fault crash-prone drivers who represent only 5% of the total licensed drivers in the state.

This research has conducted an exploratory data analysis based on the driver faultiness

and proneness. The objective of this study is to develop a crash prediction model to esti-

mate the likelihood of future crashes for the at-fault drivers. The logistic regression

method is used by employing eight years' traffic crash data (2004e2011) in Louisiana. Crash

predictors such as the driver's crash involvement, crash and road characteristics, human

factors, collision type, and environmental factors are considered in the model. The at-fault

and not-at-fault status of the crashes are used as the response variable. The developed

model has identified a few important variables, and is used to correctly classify at-fault

crashes up to 62.40% with a specificity of 77.25%. This model can identify as many as

62.40% of the crash incidence of at-fault drivers in the upcoming year. Traffic agencies can

use the model for monitoring the performance of an at-fault crash-prone drivers and

making roadway improvements meant to reduce crash proneness. From the findings, it

is recommended that crash-prone drivers should be targeted for special safety programs

regularly through education and regulations.

© 2015 Periodical Offices of Chang'an University. Production and hosting by Elsevier B.V. on

behalf of Owner. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Based on highway crash reports, conservatively speaking,

more than 50% of crashes each year are caused by human

errors. Engineers are always trying to make roadways more

forgiving and vehicles more crashworthy, which has made

considerable impact on highway safety, in order to account for
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human error. Due to the persistent effort put forth by engi-

neers, highway fatal crashes in the U.S. have finally reached

the lowest number since 1960. Much of this effort has been

spent on implementing crash countermeasures on highway

facilities by enhancing the safety on roadway geometric fea-

tures and traffic control devices. Safety education and

enforcement, the other two elements in the 4E approach

(emergency service is the fourth), also made strides in
.edu (X. Sun).

iversity.

and hosting by Elsevier B.V. on behalf of Owner. This is an open
ns.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:subasishsn@gmail.com
mailto:xsun@louisiana.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtte.2015.03.003&domain=pdf
www.sciencedirect.com/science/journal/20957564
http://dx.doi.org/10.1016/j.jtte.2015.03.003
http://dx.doi.org/10.1016/j.jtte.2015.03.003
http://dx.doi.org/10.1016/j.jtte.2015.03.003
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://www.elsevier.com/locate/jtte


j o u r n a l o f t r a ffi c and t r an s p o r t a t i o n e n g i n e e r i n g ( e n g l i s h e d i t i o n ) 2 0 1 5 ; 2 ( 3 ) : 1 4 5e1 5 7146
educating the general public on various safety risks and

enforcing safety traffic laws.

In order to fulfill the hefty goal established by the American

Association of State Highway and Transportation Officials

(AASHTO) Highway Safety Strategy to cut traffic fatalities in

half by 2020 and by Louisiana Strategic Highway Safety Plan

for ‘Destination Zero Deaths’, it is important to have effective

safety education and regulation programs while continually

improving the highway infrastructure's safety. Since crash-

prone drivers present a big adverse effect on highway safety,

they should be effectively targeted in various safety education

and enforcement programs. It is widely known that very

young and very old drivers have the highest fatal crash rates,

but this does not mean that these two groups commit the

most crashes. People with similar personal traits could have

very different levels of crash risk. Identifying high risk drivers

and studying their characteristics are critical in order to

further reduce the number of crashes through targeted safety

education and enforcement programs.

Thus, a study was conducted at the University of Louisiana

to study the impact of crash-prone drivers on safety and to

predict how a driver's crash history could affect his/her crash

occurrence(s) in the upcoming year. Logistic regression

methods were used for the drivers with repeated crash in-

volvements in previous years in order to establish relation-

ships between driver responsibility and potential crash

predictors. More importantly, the study was done to provide

evidence for developing better and more efficient safety edu-

cation programs and supporting targeted traffic laws or pro-

grams based on these crash over-involved drivers.

This paper begins with the review of earlier studies that

have attempted to relate various variables to develop models

for crash-prone drivers. This review is followed by a descrip-

tion of available data of nearly 2.08 million crash records for

eight years' crash data. The next section provides discussion

of model estimation results and its validation. In conclusion,

an overall summary of findings on the model and their im-

plications is given and some recommendations and direction

for future research are provided.
2. Literature review

Investigating crash-prone drivers' characteristics, exploring

the relationship between drivers' past crash/citation history

and their crash risk, and predicting drivers' future crash oc-

currences from their previous crash history were the points

focused on in many past studies.

The existence of crash-prone drivers was first recognized

by Greenwood and Yule (1920). In their published paper,

crash-prone drivers are defined as the drivers with a number

of crashes higher than expected. In a study of Blasco et al.

(2003), crash-prone drivers are described as drivers with

recurring crashes that are caused by human error, not by

coincidence. A study conducted by Peck et al. (1971),

concludes that it is quite difficult to accurately identify

which driver will or will not cause crashes because of the

statistical nature of crash frequencies. After analyzing five

years' crash data (1993e1997) in Kentucky, Stamatiadis et al.

(1999) found that about 2.1% of licensed drivers who were
charged with six or more points in the past 2 years

accounted for nearly 5.3% of all crashes.

Predicting a driver's crash risk based on his/her past crash

and traffic offence history is the topic of many investigations.

The predictability of future crashes in terms of past violations

or past crashes was investigated by Stewart and Campbell

(1972). This study observed a four-year history of crash and

violation records of North Carolina drivers to predict the

future crashes. Through examining older drivers' previous
conviction records and crash data, Daigneault et al. (2002)

concluded that prior crashes would be a better predictor for

crash risk than prior convictions. In a published study,

Hauer et al. (1991) determined that the performance of their

multivariate model for a crash would be improved by

making right use of the driver's past crash records. A logistic

regression model was developed by Chen et al. (1995) to

identify crash-prone drivers based on their records prior to

their at-fault crash involvements, which discovered that a

model using prior at-fault crash data can recognize up to

23% more drivers who will have one or more at-fault crash

involvements in the next 2 years than a model that uses the

conviction information. After studying 17 logistic regression

models, Gebers (1999) concluded that his models could

correctly classify crash-involved drivers up to 27.6%. By

deploying canonical correlation techniques in a subsequent

research effort, Gebers and Peck (2003) achieved an accuracy

level up to 27.2% from their best model to identify crash-

prone driver. Chandraratna et al. (2006) studied Kentucky

drivers to develop a crash prediction model that can be used

to estimate the likelihood of a driver being at fault for a near

future crash occurrence by using logistic regression

technique. Although no model can be considered perfect,

the modeling progress can be seen in research, especially in

research from the Californian studies (Chen et al., 1995;

Gebers, 1999). However, some researchers have voiced their

skepticism over predicting crash-prone drivers (Gebers, 1999;

Peck et al., 1971). In the recent years, research on at-fault

drivers is becoming popular among researchers (Brar, 2014;

Chandraratna and Stamatiadis, 2009; Currya et al., 2014; Goh

et al., 2014; Greer et al., 2014; Harootunian et al., 2014;

Karacasu and Er, 2011; Moghaddam and Ayati, 2014; Lee

et al., 2014; Tseng, 2012; Yannis et al., 2005; Zhang et al., 2014).

In contrast with the previously published works focusing

on human factors for the risk analysis of crash-prone drivers,

this research also takes into account roadway and crash var-

iables in order to get a better insight on the risky drivers' crash
proneness.
3. Methodology

3.1. Dataset

The preliminary dataset was prepared from eight years

(2004e2011) of crash data from Louisiana. It was arranged by

merging three different tables (crash table, roadway table, and

vehicle table) from the microsoft access dataset. For an indi-

vidual crash record, a total of 371 crash attributes (possible

explanatory variables) were collected. A total number of

2,076,009 crash records remained after deleting the records
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Table 1 e Numbers of at-fault drivers with crashes.

No. of crash(es) in
particular year

2004 2005 2006 2007 2008 2009 2010 2011

1 129,009 123,901 123,290 121,854 121,166 121,904 114,025 121,343

2 6076 5507 5801 5830 5346 5356 4818 2982

3 450 384 437 433 423 376 316 73

4 49 40 63 79 44 42 35 24

5 7 10 10 12 6 8 15 1

6 1 3 1 0 0 4 1 0

7 2 0 0 1 1 0 1 0

8 1 14 9 1 0 5 8 2

9 0 2 1 0 0 0 0 0
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that did not contain driver's license information. Out of 2.07

million crash records, 1,070,891 crash records were for at-fault

drivers and the remaining 1,005,118 records contained records

of not-at-fault drivers. Based on the proneness, 1,371,528 re-

cords contained the information of non-crash-prone drivers,

the rest 704,481 records the for crash-prone drivers. This big

database was analyzed by using a graphical R package

‘ggplot2’ (R Development Core Team, 2013; Wickham, 2009).

For the interest of the study, four types of drivers are

defined. At-fault drivers are responsible for crash occurrence.

Not-at-fault drivers are involved in a crash but not responsible

for. Crash-prone drivers are involved with multiple crashes.

Non-prone drivers are associated only one crash involvement.

The drivers are grouped in four general categories for analysis

purpose: not-at-fault pronedrivers, at-fault prone drivers, not-

at-fault non-prone drivers, and at-fault non-prone drivers.

In general about 4% of licensed drivers in Louisiana are

involved in at least one crash each year. The number of drivers

having crashes is summarized in Tables 1 and 2. The infor-

mation in the tables reveals that some drivers have crashes

repeatedly within one year. The annual maximum number of

crashes to a single at-fault driver is nine. Drivers causing

multiple crashes annually accounted for about 10% of crashes

occurred.

As expected, drivers holding a Louisiana driver's license

cause the majority of crashes. About 66% and 34% of crashes

are blamed on drivers with single crashes and with multiple

crashes in eight years, respectively. These 34% of crashes are

repeatedly committed by the crash-prone drivers only repre-

senting 5% of licensed drivers in the state. In Fig. 1, the

percentages of fatal crashes by both at-fault and not-at-fault

drivers are shown. In the most recent analyzed year (2011),

the percentage of fatal crashes for both categories of drivers

increased sharply after a decline in the previous year.

Traffic crash databases contain many variables some of

which are redundant in nature. The variable selectionmethod
Table 2 e Numbers of not-at-fault drivers with crashes.

No. of crash(es) in
particular year

2004 2005 2006

1 123,050 119,375 120,373

2 4420 4399 4265

3 197 190 197

4 17 25 14

5 1 2 2

6 0 1 6
uses the related previous research findings with engineering

judgment. The final variables selected for modeling are

grouped as:

1. Human factor related variables (driver age, alcohol

involvement, drug involvement, driver distraction, driver

gender, and driver severity).

2. Crash related variables (crash hour, day of the week,

collision type, and total severity).

3. Roadway related variables (alignment, lighting condition,

and road type).

4. Environment related variables (weather).

5. Vehicle related variables (vehicle condition).

Developing models with too many variables does not serve

the purpose in understanding the possible relationship be-

tween the variables. A regression subset selection with an

exhaustive search method is first performed to reduce the

number of variables through linear regression. This task was

performed by using R package ‘leaps’ (Lumley and Miller,

2013). The process is done by an exhaustive search for the

best subsets of the variables in x for predicting y in linear

regression, using an efficient branch-and-bound

optimization algorithm. The adjusted R2 value (variables that

have black boxes at the highest y-axis value) of each of the

categories would help to see the redundant categories. By

adjusting the R2 value, the best model doesn't include crash

hour, day of the week, road type, weather, total severity and

vehicle condition. The number of variables in the final

dataset reduces to ten for model development (Table 3).
3.2. At-fault and not-at-fault drivers

Both at-fault and not-at-fault drivers are divided into two

other groups: crash-prone and non-crash-prone drivers. The

graphical representation of the human factors in crashes is
2007 2008 2009 2010 2011

118,439 117,085 115,298 109,672 114,799

4110 3972 3717 3617 2520

167 164 160 144 66

32 18 9 23 24

5 5 2 4 1

0 0 0 1 0
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Fig. 1 e Percentages of fatal crashes by crash-prone drivers.

Table 3 e Variables and categories.

Category Frequency Percentage(%)

Faultiness

At-fault 252,641 55.84

Not-at-fault 199,789 44.16

Alcohol

No 432,800 95.66

Yes 19,630 4.34

Alignment

Straight-level 390,153 86.23

Curve-level 28,946 6.40

Straight-level-elevated 12,419 2.74

On grade-straight 8960 1.98

On grade-curve 3500 0.77

Curve-level-elevated 3145 0.70

Hillcrest-straight 3441 0.76

Hillcrest-curve 519 0.11

Dip, hump-straight 479 0.11

Dip, hump-curve 118 0.03

Other 587 0.13

Unknown 163 0.04

Lighting

Daylight 338,943 74.92

Dark-continuous street light 55,645 12.30

Dark-no street light 35,694 7.89

Dark-street light at

intersection only

10,454 2.31

Dusk 7115 1.57

Dawn 3939 0.87

Other 340 0.08

Unknown 300 0.07

Driver severity

No injury 367,608 81.25

Complaint 67,126 14.84

Moderate 15,199 3.36

Severe 1725 0.38

Fatal 772 0.17

Collision type

Rear end 185,154 40.92

Right angle 68,717 15.19

Sideswipe-same direction 48,880 10.80

Single vehicle 49,381 10.91

Left turn-opposite direction 17,466 3.86

Left turn-angle 10,614 2.35

Left turn-same direction 8646 1.91

Head-on 6448 1.43

Right turn-opposite direction 2332 0.52

Right turn-same direction 6834 1.51

Sideswipe-opposite direction 9332 2.06

Other 38,626 8.54

Gender

Male 258,096 57.05

Female 194,334 42.95

Driver age

15e24 137,462 30.38

25e34 109,029 24.10

35e44 77,223 17.07

45e54 63,907 14.13

55e64 37,620 8.32

65e74 17,154 3.79

75 plus 10,035 2.22

Driver distraction

Not distracted 352,781 77.97

Unknown 68,022 15.03

Other inside 14,053 3.11

Other outside 11,606 2.57

Cell phone 4931 1.09
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displayed in Fig. 2. In Fig. 2(a), it's seen that the percentages of

at-fault prone male drivers are higher than those of the other

three groups. This clearly indicates a particular gender group's
involvement in repeated at-fault crashes. Fig. 2(b) reveals that

the percentages of at-fault prone younger drivers (15e24)

involved in crashes are higher than the other three groups.

On the other hand, the percentages of crashes from non-

prone older drivers (55 plus) are higher than the other two

groups. This clearly indicates a particular age group's
involvement in repeated at-fault crashes over the years.

The distribution of crashes in Fig. 2(c) presents that alcohol

intoxicated at-fault drivers are involved in at least 5% of the

total crashes while not-at-fault drivers are involved in 3% of

the total crashes. Moreover, at-fault prone drivers are higher

in percentage than not-at-fault prone drivers. The

percentages of drug impaired and not-impaired drivers are

shown in Fig. 2(d). Over 3% of total drivers are drug impaired

in at-fault drivers' crash record. Like the alcohol impaired

statistics, drug impaired at-fault prone drivers are higher in

percentage than not-at-fault prone drivers.

The percentages of distraction categories of the drivers are

exhibited in Fig. 2(e). Nearly 94% of not-at-fault drives are not

distracted while driving. This percentage is lowered down to

65% for at-fault drivers. The remaining 35% of the drivers

are distracted while driving. This clearly distinguishes the

driving behavior of at-fault and not-at-fault drivers. Fig. 2(f)

shows the percentage of driver severity for each of the four

groups. From the data, it is found that at-fault drivers are

involved in 0.7% of total driver fatalities while not-at-fault

drivers are involved in 0.15% of total fatalities.

Fig. 2 unveils that at-fault prone drivers are higher in

percentage in alcohol and drug intoxication, distraction, and

driver fatalities than not-at-fault prone drivers. A particular

group (male younger drivers) is also seen to be higher in

percentage in at-fault prone drivers.

Fig. 3 represents two important roadway factors and

patterns of collision types in four groups of drivers. In

Fig. 3(a), it's found that curve-level related crashes are

slightly higher in percentage in not-at-fault drivers than at-

fault drivers. When the curve level is elevated, at-fault

drivers are larger in percentage than not-at-fault groups.

http://dx.doi.org/10.1016/j.jtte.2015.03.003
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Table 3 e (continued )

Category Frequency Percentage(%)

Other electronics inside 986 0.22

Others 51 0.01

Drugs

No 445,573 98.48

Yes 6857 1.52
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This clearly indicates that crash at-fault prone drivers have

some difficulties in driving when the curve-level is elevated.

Fig. 3(b) presents the driver's interaction with the roadway

lighting condition. Not-at-fault drivers are involved in more

crashes (percentage wise) in daylight than at-fault drivers. A

specific condition like dark with continuous lightings

displays an almost similar percentage of crashes for all four

groups. On the other hand, no street lighting at night is a

poor roadway condition. In this roadway condition, at-fault

drivers are more vulnerable to crashes than not-at-fault

drivers. As the database contains eight years of crash data,
Fig. 2 e Graphics of human factors for four different driver grou

involvement, (d) drugs involvement, (e) driver distraction, and (
this particular information can't be considered as a random

incident. This information also emphasizes the importance

of considering roadway and geometric variables in the

modeling of at-fault crashes for crash-prone drivers.

Collision type is also an important measure in crash-prone

drivers' crash investigation. Not-at-fault drivers are involved

in more rear-end crashes than at-fault drivers. Single vehicle

run-off crashes are higher in percentage in at-fault drivers'
group (Fig. 3(c)). At-fault drivers are involved in run-off

crashes more than ten times of not-at-fault drivers.
4. Model development

In this study, a logistic regressionmodel is developed by using

the dataset of crash-prone drivers. It is very important to note

that there are different factors associated for a driver to be

involved in crashes. Drivers involved in multiple crashes for a

time span need to be studied in order to understand the

driver's physical condition and interaction in the driving task.
ps based on (a) driver gender, (b) driver age, (c) alcohol

f) driver severity.
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Fig. 2 e (continued).
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The general driving population can be considered as not-at-

fault drivers. There is some argument that defensive drivers

are mostly not-at-fault drivers. For their defensive driving

techniques, they are not exposed to crash causation. So, it's
important to find out the different set of crash and driver

characteristics with this group of drivers. Logistic regression

has good potential to analyze this sort of dataset. The reason is

that logistic regression is a form of regression, which is used

when the response variable is binary. Logistic regression

techniques are particularly beneficialwhen the effects ofmore

than one explanatory variable are important. In this analysis,

the response variable is the fault status of the driver. The

probability of occurrence of an at-fault crash for the ith case is:

pi ¼ 1
1þ e�li

(1)

li ¼ a0 þ b1Y1i þ b2Y2i þ/þ bjYji þ/þ bnYni (2)

where li is the linear combination of predictor variable cate-

gories; bj is coefficient estimated using the maximum
likelihood method; Yji is the explanatory predictor variable as

listed in Table 4.

For the logisticmodel, Eq. (1) can be rewritten as commonly

rearranged as the following:

lg

�
pi

1� pi

�
¼ a0 þ b1Y1i þ b2Y2i þ/þ bjYji þ/þ bnYni (3)

Here, probability of not-at-fault crashes by crash-prone

drivers is equal to 1 minus probability of at-fault crashes by

crash-prone drivers.

The logistic model in R software is a special case of the

generalized linearmodel (GLM), implemented in R by the ‘glm’

method (R Development Core Team, 2013). Here the response

variable (at-fault or not-at-fault crashes) is changed as a

function of predictor variables. The output of the developed

logistic model is listed in Table 5. The null deviance

measures the variability of the dataset, compared to the

residual deviance, which measures the variability of the

residuals, after fitting the model. These deviances can be

used like the total and residual sum of squares in a linear

http://dx.doi.org/10.1016/j.jtte.2015.03.003
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Fig. 2 e (continued).

j o u rn a l o f t r a ffi c a nd t r an s p o r t a t i o n e n g i n e e r i n g ( e n g l i s h e d i t i o n ) 2 0 1 5 ; 2 ( 3 ) : 1 4 5e1 5 7 151
model to estimate how well it fits; the fit value of the model is

0.18. So, less than 19% of the deviance in the model has been

explained by the explanatory categories.

Table 5 shows the results of the model. The odds ratio is a

measure of effect size, describing the strength of association

or non-independence between two binary data values, here

at-fault and not-at-fault crashes. The odds ratio of ‘Alcohol

Yes’ is 1.29 which implies that crash-prone drivers with at-

fault crashes have a 29% higher chance of being involved in

at-fault crashes than not-at-fault crashes in the upcoming

year. The odds ratios having values greater than 1 are the

contributing factors for at-fault crashes in the future. The

ANOVA table is listed in Table 5. The table demonstrates

higher significance for all nine variables. The significance of

the variables is shown in the last column of Table 4.

To compare linear models we often use the adjusted R2. A

more general measure for these, which is also applicable to

generalized linear models, is the Akaike information criterion

(AIC). This adjusts the residual deviance for the number of

predictors. The AIC for the model is 508,379. The model has

the null deviance of 621,013 on 452,429 degrees of freedom.
The residual deviance of the model is 508,281 on 452,381 de-

grees of freedom.

The model is tested by removing one or several categories.

Each time the comparison of the model is tested with the

newer one. One simple indicator of the model's performance

is AIC value. This model shows the lower AIC value than the

others which clearly indicates that removal of one or several

categories alters the model.

The success of this logistic regression model can be

assessed with the receiver operating characteristic (ROC)

curve. The ROC curve is a plot of the sensitivity (proportion of

true positives) of the model prediction against the comple-

ment of its specificity (proportion of false positives), at a series

of thresholds for a positive outcome. The logistic model gives

the probability that each location has changed; this can be

changed to a binary outcome (at-fault vs. not-at-fault) by

selecting a threshold.

The sensitivity and specificity can be computed at any

threshold by comparing the predicted with the actual change.

The sensitivity is defined as the ability of themodel to find the

‘positive’ criteria that actually changes the response variable:

http://dx.doi.org/10.1016/j.jtte.2015.03.003
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Fig. 2 e (continued).
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S1 ¼ P=T1 (4)
where S1 is sensitivity, P is number of true positives, T1 is

number of total positives.

The other side to a model's performance, the specificity,

can be defined as the proportion of ‘negatives’ that are

correctly predicted:

S2 ¼ N=T2 (5)

where S2 is specificity, N is number of true negatives, T2 is

number of total negatives.

Fig. 4 exposes that the developed model is quite successful

in identifying the probability of at-fault and not-at-fault

crashes for the crash-prone drivers. The horizontal ticks of

Fig. 4 represent errors: either false positives or false negatives.
A graph of the sensitivity (on the y-axis) vs. the false pos-

itive rate (on the x-axis) at different thresholds is known as

receiver operating characteristic (ROC) curve. In fact, even at

the lower thresholds, the model predicts most of the true

positives with few false positives, so the curve would rise

rapidly from (0, 0). The closer the curve comes to the left-hand

border and then the top border of the graph (ROC space), the

more accurate the model is which means that it has high

sensitivity and specificity even at low thresholds. The closer

the curve comes to the diagonal, the less accurate the model

is. This is because the diagonal represents the random case:

the model predicts at random, so the chance of a true positive

is equal to that of a false positive, at any threshold.

The ROC curve can be summarized by the area under the

curve (AUC). The observed area under the ROC curve (AUC) is
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Fig. 3 e Graphics of roadway and crash factors for four different driver groups based on (a) roadway alignment, (b) roadway

lighting condition, and (c) collision type.
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0.7622 for the model, illustrated in Fig. 5(a), which would be

generally accepted as a fair value in a 0.5e1 scale. The

sensitivity-specificity curve is displayed in Fig. 5(b).
5. Conclusions

The main objective of this study is to use logistic regression

technique and develop crash prediction models for the at-

fault crashes of crash-prone drivers in upcoming years. The

eight years crash data analysis introduced in this paper has

demonstrated that crash-prone drivers need to be carefully

targeted in safety education and traffic law enforcement
programs because their over-involvement in crashes presents

a large adverse effect on roadway safety.

At first, the database is analyzed by means of basic

descriptive statistical methods generating a number of inter-

esting facts. Younger male drivers (15e34) are more vulner-

able to crash proneness. Crash-prone drivers have issues with

roadways with no illumination. Fatality and severity rates are

higher in at-fault crash-prone drivers. Alcohol and drug

impaired driving are seen more frequently in crash-prone

drivers than in non-prone ones. Single vehicle run-off crashes

are higher in percentage in the at-fault drivers' group. At-fault
prone drivers are involved in more curved-aligned roadways

than the other drivers. Secondly, the logistic regression
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Fig. 3 e (continued).
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method is used by employing eight years of crash data

(2004e2011) for Louisiana. Crash predictors like the driver's
crash involvement, crash and road characteristics, human

factors, crash type, and environmental factors are used in this

study. The at-fault and not-at-fault status of the crashes are

used as the dependable variable. The developed model can be

used to correctly classify at-fault crashes up to 62.40% with

specificity of 77.25%. This model can identify as many as
62.40% of the crash incidence of at-fault drivers in the up-

coming year. Traffic agencies can use the model for moni-

toring the performance of an at-fault prone driver as well as

make improvements to the roadways to reduce crash

proneness.

It is determined that crash-prone drivers should be tar-

geted by special safety programs regularly through education

and regulations. For instance, a state motor vehicle
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Table 4 e Results of logistic regression model.

Predictor variable Estimate Std. error z value Pr(>jzj) Odds ratio 2.5% 97.5%

(Intercept) 2.7787 0.0794 35.0010 <2e-16 16.0983 13.8107 18.8552

Drugs Yes 0.7130 0.0330 21.6220 <2e-16 2.0402 1.9128 2.1768

Alcohol Yes 0.2565 0.0196 13.0860 <2e-16 1.2924 1.2438 1.3431

Alignment Curve-Level-Elevated �0.1611 0.0472 �3.4140 0.000641 0.8512 0.7761 0.9338

Alignment Dip, Hump-Curve �0.1332 0.2343 �0.5690 0.569547 0.8753 0.5552 1.3936

Alignment Dip, Hump-Straight �0.0919 0.1079 �0.8520 0.39437 0.9122 0.7386 1.1277

Alignment Hillcrest-Curve �0.2090 0.1120 �1.8660 0.062038 0.8114 0.6520 1.0115

Alignment Hillcrest-Straight �0.3372 0.0420 �8.0260 1e-15 0.7138 0.6574 0.7750

Alignment On Grade-Curve 0.1140 0.0486 2.3480 0.018891 1.1208 1.0193 1.2331

Alignment On Grade-Straight �0.3150 0.0288 �10.9420 <2e-16 0.7298 0.6898 0.7722

Alignment Other �0.4529 0.0985 �4.5960 0.0000043 0.6358 0.5241 0.7713

Alignment Straight-Level �0.2530 0.0158 �15.9850 <2e-16 0.7765 0.7528 0.8009

Alignment Straight-Level-Elevated �0.3395 0.0256 �13.2830 <2e-16 0.7121 0.6773 0.7487

Alignment Unknown �1.0472 0.1882 �5.5650 2.62e-08 0.3509 0.2428 0.5080

Lighting Dark-No Street Lights 0.3703 0.0175 21.1230 <2e-16 1.4481 1.3992 1.4987

Lighting Dark-Street Light At Intersection 0.1128 0.0251 4.4920 0.00000705 1.1195 1.0657 1.1760

Lighting Dawn 0.1620 0.0388 4.1780 0.0000294 1.1758 1.0898 1.2687

Lighting Daylight 0.1214 0.0106 11.4800 <2e-16 1.1291 1.1059 1.1527

Lighting Dusk 0.0779 0.0287 2.7190 0.006547 1.0811 1.0220 1.1435

Lighting Other 0.2466 0.1270 1.9410 0.052262 1.2796 0.9982 1.6431

Lighting Unknown �0.1786 0.1446 �1.2350 2.17e-01 0.8365 0.6305 1.1119

Collision_Type Left Turn-Angle �0.1975 0.0351 �5.6220 1.89e-08 0.8207 0.7661 0.8792

Collision_Type Left Turn-Opposite Direction �0.2366 0.0326 �7.2580 3.93e-13 0.7893 0.7405 0.8414

Collision_Type Left Turn-Same Direction �0.2490 0.0366 �6.8060 1.00e-11 0.7796 0.7256 0.8375

Collision_Type Other 0.1564 0.0304 5.1510 2.59e-07 1.1693 1.1017 1.2410

Collision_Type Rear End �0.2020 0.0287 �7.0410 1.9e-12 0.8171 0.7724 0.8644

Collision_Type Right Angle �0.1633 0.0294 �5.5620 2.67e-08 0.8493 0.8018 0.8996

Collision_Type Right Turn-Opposite Direction �0.1454 0.0531 �2.7390 0.006154 0.8647 0.7792 0.9595

Collision_Type Right Turn-Same Direction �0.3006 0.0385 �7.8140 5.54e-15 0.7404 0.6866 0.7983

Collision_TypeSideswipe-Opposite Direction �0.2485 0.0361 �6.8760 6.16e-12 0.7800 0.7266 0.8372

Collision_Type Sideswipe-Same Direction �0.3267 0.0299 �10.9170 <2e-16 0.7213 0.6802 0.7649

Collision_Type Single Vehicle 2.1865 0.0329 66.3920 <2e-16 8.9040 8.3476 9.4979

Driver_Gender Male 0.3672 0.0069 53.3560 <2e-16 1.4436 1.4243 1.4633

Driver_Severity Fatal 0.5627 0.1287 4.3710 1.24e-05 1.7554 1.3709 2.2719

Driver_Severity Moderate 0.3912 0.0223 17.5140 <2e-16 1.4788 1.4155 1.5450

Driver_Severity No Injury 0.6080 0.0101 60.0860 <2e-16 1.8368 1.8007 1.8736

Driver_Severity Severe 0.5201 0.0646 8.0510 8.19e-16 1.6822 1.4827 1.9101

Driver_Age25e34 �0.5109 0.0093 �54.7770 <2e-16 0.5999 0.5891 0.6110

Driver_Age35e44 �0.7060 0.0103 �68.4500 <2e-16 0.4936 0.4837 0.5037

Driver_Age45e54 �0.7144 0.0109 �65.3360 <2e-16 0.4895 0.4791 0.5001

Driver_Age55e64 �0.6505 0.0131 �49.7300 <2e-16 0.5218 0.5086 0.5353

Driver_Age65e74 �0.3437 0.0179 �19.1850 <2e-16 0.7091 0.6847 0.7345

Driver_Age75 plus 0.4256 0.0243 17.4980 <2e-16 1.5305 1.4594 1.6053

Driver_Distraction Not Distracted �3.1110 0.0721 �43.1610 <2e-16 0.0446 0.0386 0.0512

Driver_Distraction Other Electronics Inside �0.7837 0.1374 �5.7030 1.18e-08 0.4567 0.3502 0.6005

Driver_Distraction Other Inside 0.8995 0.0938 9.5860 <2e-16 2.4583 2.0434 2.9526

Driver_Distraction Other Outside �0.5703 0.0798 �7.1440 9.04e-13 0.5654 0.4824 0.6597

Driver_Distraction Others �0.6509 0.5394 �1.2070 0.227548 0.5216 0.2027 1.7753

Driver_Distraction Unknown �1.3430 0.0728 �18.4550 <2e-16 0.2611 0.2257 0.3003

Table 5 e ANOVA table.

Df Deviance Resid.df Resid.dev Pr(>Chi)

Null 452,429 621,013

Drugs 1 1310 452,428 619,703 <2e-16
Alcohol 1 1592 452,427 618,111 <2e-16
Alignment 11 3520 452,416 614,591 <2e-16
Lighting 7 4005 452,409 610,587 <2e-16
Collision type 11 28,361 452,398 582,225 <2e-16
Driver gender 1 3416 452,397 578,809 <2e-16
Driver severity 4 4472 452,393 574,337 <2e-16
Driver age 6 10,871 452,387 563,466 <2e-16
Driver distraction 6 55,185 452,381 508,281 <2e-16
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Fig. 4 e Successes of models. (a) Success of the logistic model. (b) Success of the model (sensitivity: 0.624, specificity: 0.7725).

Fig. 5 e ROC curve and sensitivity-specificity curve. (a) ROC curve. (b) Sensitivity-specificity curve.
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registration office can work with enforcement agencies to

establish a driver's license reviewing program that has the

authority to send warnings or to suspend a driver's license, or

to request that the driver take amandatory safety course if the

driver has multiple crashes within a short time period.
r e f e r e n c e s

Blasco, R.D., Prieto, J.M., Cornejo, J.M., 2003. Accident probability
after accident occurrence. Safety Science 4 (6), 481e501.

Brar, S.S., 2014. Estimating the over-involvement of suspended,
revoked, and unlicensed drivers as at-fault drivers in
California fatal crashes. Journal of Safety Research 50, 53e58.

Chandraratna, S., Stamatiadis, N., 2009. Quasi-induced exposure
method: evaluation of not-at-fault assumption. Accident
Analysis and Prevention 41 (2), 308e313.

Chandraratna, S., Stamatiadis, N., Stromberg, A., 2006. Crash
involvement of drivers with multiple crashes. Accident
Analysis and Prevention 38 (3), 532e541.

Chen, W., Cooper, P., Pinili, M., 1995. Driver accident risk in
relation to the penalty point system in British Columbia.
Journal of Safety Research 26 (1), 9e18.

Currya, A.E., Pfeiffer, M.R., Myers, R.K., et al., 2014. Statistical
implications of using moving violations to determine crash
responsibility in young driver crashes. Accident Analysis and
Prevention 65, 28e35.
Daigneault, G., Joly, P., Frigon, J.Y., 2002. Previous convictions or
accidents and the risk of subsequent accidents of older
drivers. Accident Analysis and Prevention 34 (2), 257e261.

Gebers, M.A., 1999. Strategies for Estimating Driver Accident Risk
in Relation to California's Negligent-operator Point System.
California Department of Motor Vehicles, Sacramento.

Gebers, M.A., Peck, R.C., 2003. Using traffic conviction correlates
to identify high accident-risk drivers. Accident Analysis and
Prevention 35 (6), 903e912.

Goh, K., Currie, G., Sarvi, M., et al., 2014. Factors affecting the
probability of bus drivers being at-fault in bus-involved
accidents. Accident Analysis and Prevention 66, 20e26.

Greenwood, M., Yule, G.U., 1920. An inquiry into the nature of
frequency distributions representative of multiple
happenings with particular reference to the occurrence of
multiple attacks of disease or of repeated accidents. Journal
of Royal Statistical Society 83 (2), 255e279.

Greer, A.M., Macdonald, S., Mann, R.E., 2014. Stress, adrenaline, and
fatigue contributing to at-fault collision risk: quantitative and
qualitative measures of driving after gambling. Journal of
Transport andHealth. http://dx.doi.org/10.1016/j.jth.2014.11.001.

Harootunian, K., Lee, B.H.Y., Aultman-Hall, L., 2014. Odds of fault
and factors for out-of-state drivers in crashes in four states of
the USA. Accident Analysis and Prevention 72, 32e43.

Hauer, E., Persaud, B.N., Smiley, A., et al., 1991. Estimating the
accident potential of an Ontario driver. Accident Analysis
and Prevention 23 (2/3), 133e152.

Karacasu, M., Er, A., 2011. An analysis on distribution of traffic
faults in accidents, based on driver's age and gender:

http://refhub.elsevier.com/S2095-7564(15)00025-2/sref1
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref1
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref1
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref2
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref2
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref2
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref2
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref3
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref3
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref3
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref3
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref4
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref4
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref4
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref4
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref5
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref5
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref5
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref5
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref6
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref6
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref6
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref6
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref6
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref7
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref7
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref7
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref7
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref8
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref8
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref8
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref9
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref9
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref9
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref9
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref10
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref10
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref10
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref10
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref11
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref11
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref11
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref11
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref11
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref11
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref13
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref13
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref13
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref13
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref14
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref14
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref14
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref14
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref15
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref15
http://dx.doi.org/10.1016/j.jtte.2015.03.003
http://dx.doi.org/10.1016/j.jtte.2015.03.003
http://dx.doi.org/10.1016/j.jth.2014.11.001


j o u rn a l o f t r a ffi c a nd t r an s p o r t a t i o n e n g i n e e r i n g ( e n g l i s h e d i t i o n ) 2 0 1 5 ; 2 ( 3 ) : 1 4 5e1 5 7 157
Eskisehir case. Procedia-Social and Behavioral Sciences 20,
776e785.

Lee, J., Abdel-Aty, M., Choi, K., 2014. Analysis of residence
characteristics of at-fault drivers in traffic crashes. Safety
Science 68, 6e13.

Lumley, T., Miller, A., 2013. Leaps: Regression Subset Selection. R
PackageVersion 2.9. http://CRAN.R-project.org/package¼leaps.

Moghaddam, A., Ayati, E., 2014. Introducing a risk estimation
index for drivers: a case of Iran. Safety Science 62, 90e97.

Peck, R.C., McBride, R.S., Coppin, R.S., 1971. The distribution and
prediction of driver accident frequencies. Accident Analysis
and Prevention 2 (4), 243e299.

R Development Core Team, 2013. R: a Language and Environment
for Statistical Computing. R Version 3.0.1. R Development Core
Team, Vienna.

Stamatiadis, N., Agent, K.R., Pigman, J., et al., 1999. Evaluation of
Retesting in Kentucky's Driver License Process. University of
Kentucky, Frankfort. Research Report KTC-99-23.
Stewart, J.R., Campbell, D.J., 1972. The Statistical Association
between Past and Future Accidents and Violations. The
University of North Carolina, Chapel Hill.

Tseng, C.M., 2012. Social-demographics, driving experience and
yearly driving distance in relation to a tour bus driver's at-
fault accident risk. Tourism Management Research, Policies,
Practice 33, 910e915.

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis.
Springer, New York.

Yannis, G., Golias, J., Papadimitriou, E., 2005. Driver age and
vehicle engine size effects on fault and severity in young
motorcyclists accidents. Accident Analysis and Prevention 37
(2), 327e333.

Zhang, G.N., Yau, K.K.W., Zhang, X., 2014. Analyzing fault and
severity in pedestrianemotor vehicle accidents in China.
Accident Analysis and Prevention 73, 141e150.

http://refhub.elsevier.com/S2095-7564(15)00025-2/sref15
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref15
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref15
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref16
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref16
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref16
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref16
http://CRAN.R-project.org/package&equals;leaps
http://CRAN.R-project.org/package&equals;leaps
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref18
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref18
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref18
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref19
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref19
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref19
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref19
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref20
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref20
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref20
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref21
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref21
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref21
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref22
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref22
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref22
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref23
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref23
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref23
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref23
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref23
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref24
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref24
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref25
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref25
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref25
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref25
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref25
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref26
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref26
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref26
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref26
http://refhub.elsevier.com/S2095-7564(15)00025-2/sref26
http://dx.doi.org/10.1016/j.jtte.2015.03.003
http://dx.doi.org/10.1016/j.jtte.2015.03.003

	Estimating likelihood of future crashes for crash-prone drivers
	1. Introduction
	2. Literature review
	3. Methodology
	3.1. Dataset
	3.2. At-fault and not-at-fault drivers

	4. Model development
	5. Conclusions
	References


